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Abstract

Virtual illustration of a human face is essential to en-
hance the mutual interaction in a cyber community. In this
paper we propose a solution to solve two bottlenecks in fa-
cial analysis and synthesis for an interactive system of hu-
man face cloning for non-expert users of computer games.

Tactical maneuvers of the gamer make single camera ac-
quisition system unsuitable to analyze and track the face
due to its large lateral movements. For an improved facial
analysis system, we propose to acquire the facial images
from multiple cameras and analyze them by multi-objective
2.5D Active Appearance Model (MOAAM).

Facial morphological dissimilarities between a human
face and an avatar make the facial synthesis quite complex.
To successfully clone or retarget the gamer facial expres-
sions and gestures on to an avatar, we introduce a simple
mathematical link between their appearances.

Results obtained validate the efficiency, accuracy and ro-
bustness achieved.

1. Introduction
Over the last decade computer games have became more

and more an interactive entertainment. Virtual representa-
tion of a character has gained the interest of both gamers and
researchers. Gamers do not want to sit and play the games,
instead they need to get involved in the game to an extent
to visualize opponent’s face and interact with him virtually.
The use of virtual representation of a human face in game
consoles or creating avatars has been tremendously increas-
ing. In addition, a growing number of websites now host
virtual characters technologies to deliver their contents in
a more natural and friendly manner. Gestures and features
(e.g. eyes, nose, mouth and eyebrows) of a human face are
actually the reflection of a person’s inner emotional state

and personality. They are also believed to play an important
role in social interactions, as they give clues to a gamer’s
state of mind and therefore help the communication partner
to sense the tone of a speech, or the meaning of a particu-
lar behavior. For these reasons, they can be identified as an
essential non-verbal communication channel in game con-
soles.

To track, analyze and synthesize gamer’s face efficiently
and to ensure the interaction of a gamer, system needs to
overcome two bottlenecks in facial analysis and synthesis.
Facial analysis deals with the face alignment, pose, features,
gestures and emotions extractions. Excitements caused by
the tactical moves of a game, compel the gamer to move
around in various directions. These maneuvers produce
large lateral movements of a face, which makes it difficult
for a facial analysis system to track and analyze the face.
For a facial synthesis system, cloning or retargeting the fea-
tures, emotions and orientation of a human face on to an
avatar is again one of the challenging tasks. Cloning or
retargeting is difficult due to the facial morphological dif-
ferences between a real face and an avatar. Furthermore,
large and complex face deformations due to the expressions
made by a non-rigid human face makes the online system
computationally complex to clone or replicate it on to an
avatar.

We propose a robust and efficient gamer’s online cloning
interactive system as shown in figure 1. Our system is com-
posed of two cameras installed on the extreme edges of the
screen to acquire real time images of the gamer. Gamer’s
face is analyzed and his pose and expressions are synthe-
sized by the system to clone or retarget his features in the
form of an avatar so that the gamers can interact with each
other virtually. In the following paragraphs we briefly ex-
plain solutions by the facial analysis and synthesis systems,
embedded in our proposed interactive system.

Face analysis: Human faces are non-rigid objects. The
flexibility of a face is well tackled with the appearance-



Figure 1. Global System

based or deformable model methods [1], which are re-
markably efficient for features extraction and alignment of
frontal-view faces. As we will see in section 2, researchers
worked out the bottlenecks of face analysis by emphasizing
on the model generation and their search methodologies.
However we emphasize on increasing the amount of data
to be processed with the help of multiple cameras as shown
in figure 1. In single-view system face alignment cannot be
accomplished when a face occludes itself during its lateral
motion, such as in a profile view only half of the face is
visible. To overcome this dilemma we exploit data from an-
other camera and associate it with the one unable to analyze
at the first place. In multi-camera system, optimization of
more than one error is to be performed between a model and
query images from each camera. Searching for an optimum
solution of a single task employing two or more distinct
errors requires multi-objective optimization (MOO). Many
MOO techniques exist but to analyze the face we propose
optimization of MOAAM by Pareto based NSGA-II [2] due
to its exploitation and exploration ability, non-dominating
strategy and population based approach which provide the
mutual interaction of the results by multiple cameras. In
this paper, we use our previous work of [3] and improved
our system by obtaining new results based on a new syn-
thetic face database.

Face synthesis: In facial synthesis system the purpose
is to retarget or clone gamer’s face orientation and its fea-
tures on the synthetic model so that the gamers can interact
with each other virtually. Cloning and retargeting is diffi-
cult, because avatar does not have the same morphology as
the gamer. Our contribution in this system is the introduc-
tion of a simple mathematical relation between their appear-
ances called ATM (Appearance Transformation Matrix). To
calculate it we make use of two databases explained in sec-
tion 5.1. The first database is a large collection of human
facial expressions (H-database) and the second database
is an optimal database of synthetic facial expressions (A-
database) constructed for the avatar based on the analysis
of the H-database. Our second contribution is to provide an
interactive system for the gamer to build his own database
and calculate gamer’s specific ATM. The generation of the
gamer’s database is based on our face analysis system of
MOAAM and is obtained by requesting the gamer to imi-
tate few specific and relevant facial expressions displayed

on the screen.
Remaining of the paper is organized as follow. Section 2

presents the previous and related work in both the domains
of facial analysis and synthesis. Section 3 presents the pre-
liminary concepts of our system. Section 4 describes the
work done in face analysis. Section 5 explains the system
to synthesize a face. Detailed description of our proposed
interactive system is elaborated in Section 6, while section 7
concludes the paper.

2. Previous and Related Work
In this section we have divided the previous and related

work for both facial analysis and synthesis into two subsec-
tions. However, our first contribution in the facial analysis
domain is explained in detail in section 4. And our second
contribution in the facial synthesis domain is explained in
section 5.

2.1. Face Analysis

Multiple 2DAAM: Active Appearance Model (AAM) is
one of the well known deformable method [1] efficient in
feature extraction and alignment of a face. [4] and [5] per-
formed pose prediction by using 3 AAM models, one ded-
icated to the frontal view and two for the profile views. [6]
and [7] implemented Active Shape Model (ASM) for the
face alignment, by using 5 poses of each face to create a
model. [8] also used 3 DAMs (Direct Appearance Models)
for face alignment. [9] used another appearance based ar-
chitecture employing 5 view-specific template detectors to
track large range head yaw by a monocular camera. The Ra-
dial Basis Function Network interpolates the response vec-
tors obtained from normalized correlation from the input
image and 5 template detectors.

Use of more than one model of AAM has some disad-
vantages: i) Storage of shapes and textures of the images
of all the models requires an enormous amount of storage
memory. ii) Extensive processing of computing 3 AAM in
parallel to determine the model required for query images,
eventually makes the system sluggish. Moreover classical
AAM search methodology requires precomputed regression
matrices, which become a burden on time and memory as
the amount of training images increases.

Coupled View AAM is used in [10] to estimate the pose.
In the training phase they include 2D shapes and 2D textures
of both frontal and profile views of each subject. Appear-
ance parameters of their CV-AAM have the capability to es-
timate the pose. Appearance parameters of their model can
tune both the shape and the profile angle of a face. For the
profile angle estimation they have used several appearance
parameters which can be replaced by one pose parameter
in a 3D AAM. Thus, increase in the number of parameters
decreases the rapidness of the system.



3DAAM: Face can also be aligned by 3D deformable
model methods in which a set of images are annotated in
3D to model a face. [11] used 3D face model Candide along
with simple gradient descent method as a search algorithm
for face tracking. [12] used 2D+3D AAM along with a fit-
ting algorithm, called inverse compositional image align-
ment algorithm, which is again an extension of a gradient
descent method. [13] applied 3D AAM for face tracking in
a video sequence using same IC-LK (Inverse Compositional
Lucas-Kanade) algorithm. The optimization by gradient de-
scent lack the properties of exploration and diversity, hence
cannot be used in MOO. In our previous work of [14] we
have used genetic algorithm instead of gradient descent for
the optimization in 2.5D AAM.

Multi-view fitting by 2D or 3DAAM: Pose angles can be
estimated by fitting the above 2D or 3D deformable mod-
els on multiple images acquired by two, three or multi-
ple cameras. [15] proposed a robust algorithm of fitting a
2D+3D AAM to multiple images acquired at the same in-
stance. Their fitting methodology, instead of decomposing
into three independent optimizations from three cameras,
adds all the errors. Moreover they used gradient descent
(ICLK: Inverse Compositional Lukas Kanade) algorithm as
a fitting method, which eventually requires to pre-compute
Jacobians and Hessian matrix. [16] proposed another algo-
rithm of face tracking by Stereo Active Appearance Model
(STAAM) fitting, which is an extension of the above fitting
of 2D+3D AAM to multiple images. Lack of exploration
capability of the method makes ICLK very sensitive to ini-
tialization.

In [17] the advantages of adaptive appearance model
based method with a 3D data-based tracker using sparse
stereo data is combined. [18] proposed a model-based
stereo head tracking algorithm and is able to track six de-
grees of freedom of head motions. Their face model con-
tains 300 triangles compare to our 113 triangles usually
used in classical AAM and ICLK based AAM etc. More-
over their initialization process requires user intervention.
[19] performed 2D head tracking for each subject from mul-
tiple cameras and obtained 3D head coordinates by triangu-
lation. Lack of ground truth error calculations creates un-
certainty in the accuracy of their system. Furthermore slight
calibration error massively deteriorates the triangulation.

Our proposition of face alignment [3] is based on two
cameras using 2.5D AAM optimized by Pareto based multi-
objective genetic optimization of NSGA-II. It not only elim-
inates the steps of precomputation but also provides both
exploration and exploitation capability in the search by
NSGA-II. Hence it is not sensitive to initialization.

2.2. Face Synthesis

By facial cloning, we refer to the action of transferring
the animation from a source (typically a human face) to a

target (another human face or a synthetic one). The cloning
(or retargeting) can be either direct or indirect. In direct
retargeting, the purpose is to transfer the motion itself of a
few selected interest markers (and optionally a texture) from
one face to another [20]. The marker trajectories usually
undergo a transformation that compensates for the morpho-
logical differences between the source and the target face
[21, 22, 23, 24]. This morphological adaptation is not al-
ways satisfactory, especially if the source and the target
faces are very different. An interesting way to get around
this difficulty is to turn to indirect retargeting. In indirect
retargeting, the motion data is not transferred as such, but is
first converted by a specific model to a better representation
space, or parameter space, more suited for the motion trans-
fer [25, 26]. In the next paragraph we will go over some of
the most common representations used for indirect retarget-
ing.

In order for a facial parameterization to be suited for re-
targeting applications, it must be adapted to the extraction
of parameters from motion capture data, and offer an accu-
rate description of facial deformations. Early parameteriza-
tion schemes like direct parameterizations [27] or pseudo-
muscle systems [28] [29] [30] usually have the advantage
of being simple to conceptualize and computationally effi-
cient, but the obtained parameter sets are generally not op-
timal. In particular, when not operated carefully, they can
generate inconsistent facial configurations. Besides, it is not
straightforward to extract the values of the parameters from
raw facial motion data (video or 3D motion capture). Mus-
cle physics systems attempt to simulate more rigorously the
mechanical behavior of the human face, and thus tend to im-
prove the degree of realism of facial deformations [31]. Yet,
as for direct parameterization, the manipulation of the mus-
cle network is not particularly intuitive, and the extraction
of muscular contractions from video or motion capture data
remains an open problem [32]. A popular facial parameter-
ization which directly originates from observation is the Fa-
cial Action Coding System (FACS) [33]. This scheme was
originally meant to describe facial expressions in a stan-
dardized way in terms of combination of basic facial Action
Units (AU). Its coherence and good practical performances
made it an interesting tool on which to build performance
based animation systems. The MPEG-4 standard later ex-
tended this concept for facial animation compression pur-
poses, introducing the Facial Animation Parameters (FAP)
[34]. The FACS and MPEG-4 FAP have been used to cap-
ture and retarget static and dynamic facial expressions be-
tween human and synthetic faces [35] [36]. The disadvan-
tage of methods based on multiple separate action units, is
that the natural correlation between multiple facial action
occurring in each facial expression is ignored. Thus the an-
imation resulting from these approaches tend to be some-
what non-human or robotic.



More recently studies have aimed at obtaining more nat-
ural parameterization by performing a statistical modeling
of the facial motion. This consist in gathering a collection of
relevant examples (database) and to statistically detect par-
ticular variation modes, which encompass the specificity of
the source or the target. The facial parameters correspond to
the contribution of these modes. When two faces have cor-
responding models, Animations can be easily transferred by
mapping the model parameters from one face to the other.
Many studies have pointed that motion data consisting of
only the positions of a few markers cannot efficiently cap-
ture the subtleties of human facial expressions, and have
proposed to also capture the textural information [37]. Ac-
tive Appearance Models (AAM) are frequently used for that
propose, since they encompass the motion of well chosen
geometric points as well as the pixel intensity changes oc-
curring on the faces, which account for finer deformation of
the skin [1]. [38] and [39] obtain impressive results of facial
expressions transfer between multiple human faces based
on an AAM parameterization. For this type of retargeting
scheme to be successful however, the appearance models of
the source and the target must characterize the same scope
of expressions. In particular their databases must corre-
spond. Constructing a database of expressions for a syn-
thetic face which matches the scope of the source human
database is not trivial. [40] transfer facial expressions from
the AAM parameters of a human face to an avatar based
on a blendshape database. The database of the avatar con-
sists of key expressions selected from the human database,
however too few expressions are used for the virtual face to
allow for a detailed expression retargeting. [41] later im-
proved this approach by preprocessing the human database
in order to automatically isolate individual facial actions.
Each of the facial actions can then be reproduced on the
avatar to construct a blendshape database. For a reason-
able number of facial expressions, this approach ensures the
compatibility between the source and target database, with-
out requiring the construction of many avatar facial exam-
ples. Yet, for a more complete scope of facial movements,
the number of individual facial actions can become large,
and thus the number of facial configurations for the avatar
database as well. Moreover, by decomposing the expres-
sions into individual units, the correlation between these
units when performing an expression is lost in the param-
eterization.

We propose a new method to efficiently transfer facial
expressions from a 2D human face to a synthetic face, based
on active appearance models. The method analyzes the
human expression database, and automatically determines
which key expressions have to be constructed in the avatar
database for the expression retargeting to be efficient.

3. Preliminary Concepts
3.1. 2.5D AAM Modeling

2.5D AAM of [3] and [14] is constructed by i) 2D land-
marks of the frontal view (width and height of a face model)
and x coordinates of landmarks in profile view (depth of a
face model) combined to make 3D shape model and ii) 2D
texture of only frontal view mapped on its 3D shape. In the
training phase of 2.5D AAM, 68 points are marked manu-
ally as shown in figure 2.

All the landmarks obtained previously are resized and
aligned in three dimensions using Procrustes analysis ([42],
[43]). The mean of these 3D landmarks is calculated which
is called mean shape. Principal Component Analysis (PCA)
is performed on these shapes to obtain shape parameters
with 95% of the variation stored in them.

si = s̄+ φs ∗ bs (1)

where si is the synthesized shape, s̄ is the mean shape, φs

are the eigenvectors obtained during PCA and bs are the
shape parameters.

The 3D mean shape obtained in the previous step is used
to extract and warp (based on the Delaunay triangulation)
the frontal views of all the face images. Only two dimen-
sions of the mean shape are used to get 2D frontal view
textures. That is why we call our model as 2.5D AAM,
since it is composed of landmarks represented in 3D do-
main but only 2D texture is warped on this shape to adapt
2.5D model. Mean of these textures is calculated. Followed
by, another PCA to acquire texture parameters with 95% of
the variation stored in these parameters.

gi = ḡ + φg ∗ bg (2)

where gi is the synthesized texture, ḡ is the mean texture,
φg are the eigenvectors obtained during PCA and bg are the
texture parameters.

Both of the above parameters are combined by concate-
nation of bs and bg . And a final PCA is performed to obtain
the appearance parameters.

b = [bsbg]T , b = φC ∗ C (3)

where φC are the eigenvectors obtained by retaining 95% of
the variation and C is the matrix of the appearance parame-
ters, which are used to obtain shape and texture of each face
of the database.

2.5D model can be translated as well as rotated with the
help of pose vector P .

P = [θx, θy, θz, tx, ty, Scale]T (4)

where θx corresponds to the face rotating around the x axis
(pitch: shaking head up and down), θy to the face rotating



Figure 2. AAM Modeling

around the y axis (yaw: profile views) and θz to the face
rotating around the z axis (roll). tx, ty are the offset values
from the supposed origin and Scale is a scalar value for the
magnification of the model in all the dimensions. Figure 3
shows the model rotating by changing θy , making left and
right semi profile views.

Figure 3. Snapshots of rotating 2.5D AAM

In segmentation this deformed, rotated and translated
shape model obtained by varying C and P parameters, is
placed on the query image I to warp the face to mean frontal
shape. After this shape normalization we apply photometric
texture normalization to overcome illumination variations.
The objective is to minimize pixel error

e =
√∑

x

[I(C,P )−M(C)]2 (5)

where I(C,P ) is the segmented image and M(C) is the
model obtained by C parameters. To choose good param-
eters we need an optimization method. In our proposition,
both of these pose P and appearance parameters C are op-
timized by genetic optimization of NSGA-II.

3.2. Multiple Camera System

In single-view system face alignment cannot be accom-
plished when a face occludes itself during its lateral motion.
Such as in a profile view only half of the face is visible. To
overcome this dilemma we exploit data from another cam-
era and associate it with the one unable to analyze at the
first place. This association helps the search methodology
to reduce the possibility of divergence. Moreover better out-
comes of one camera can escort the other. In multi-view
systems, higher the amount of processing data higher is the
robustness ability of a system however efficiency deterio-
rates due to high consumption of processing time and mem-

ory. In other words a trade-off is required between robust-
ness and efficiency.

A database of facial images capable of self assessing is
desired to validate our application. The community lacks
such a database which involves lateral motion of a face cap-
tured by more than one camera. In order to implement our
application we developed a multi-view scenario. The pur-
pose of constructing this multi-view system is to emulate
the scenario of integrating two off the shelf webcams placed
on the extreme edges of the display screen facing towards
the user as shown in figure 4.

Figure 4. Multi-View System

AAM rendered on the facial images of both webcams are
blended together to represent a face model seen by a virtual
camera placed in between. The results of this virtual web-
cam are compared by a third camera actually placed at the
center. In other words it is a comparison between a multi-
camera system by MOAAM with single-camera system by
SOAAM (Single-Objective AAM). These three cameras are
placed 25 degrees apart on a boundary of a circle with a ra-
dius of 70 cm as shown in figure 4. Center of this circle
serves as a principal point for each camera. Seven individ-
uals from a research team are invited for screen shots with
the intention of obtaining 1218 images with lateral motion.
Each individual rotates his face gradually from frontal view



to left and right profile views. At each instance three images
from each webcam are acquired simultaneously to obtain
temporally synchronized images.

Illumination remains steady through out the sequence.
It is accomplished by a white ambient light placed behind
the central camera as shown in the figure 4. The light we
used comes with the stand and a built-in umbrella holder to
give extra flexibility. By adjusting the umbrella’s position
we have rejected the bright spot on the face. It works well
for taking facial images with webcams.

Camera calibration is performed by a publicly available
toolbox [44]. A simple planar checkerboard is placed in
front of the cameras and sequence of images are taken to
calculate calibration parameters. With the help of the tool-
box, four corners of the checker board are extracted and cal-
ibration is performed with respect to the grid of the checker-
board. The toolbox calculates intrinsic parameters (focal
length, principal point, distortion and skew) and extrinsic
parameters (rotation vector and translation vector) for each
camera. With the help of these parameters, all the facial
images of these cameras are calibrated.

Figure 5 shows some images of test database acquired
from three webcams. A similar scenario is emulated in the
software MAYA for a video of synthetic faces. The syn-
thetic face database does not contain camera calibration er-
ror hence it is helpful to analyze results free of calibration
errors. Figure 6 show some examples of test database of
synthetic faces1. Some of the facial images of M2VTS [45]
(learning database) are also shown in figure 7.

Figure 5. Test database images: Same pose from 3 webcams

4. Face Analysis

The main objective of our application is to clone a real
human face in the form of an avatar. For such an application
face analysis plays an important role for face synthesis. The
more efficient the analysis is, facial synthesis is likely to
be more accurate. To obtain an efficient and robust face
analysis system we acquire a human face with two cameras
and analyze it by an appearance based morphable model of
2.5D AAM.

1Synthetic face in the first row was obtained from www.ballistic.com,
while remaining face models were made in a software named as ”Facial
Studio”. All of them were imported in MAYA for rendering the synthetic
facial images.

Figure 6. Test database synthetic images

Figure 7. Learning database images

4.1. MOAAM

In single-view system, single error between model and
query image is optimized. However in multi-view sys-
tem, the optimization of more than one error is to be per-
formed between a model and query images from each cam-
era. AAM fitting on multi-views is shown in figure 8. In
multi-view AAM, the model is rendered on both the im-
ages from each camera with the same C parameters. The
P parameters also remain the same except a yaw angle off-
set (θoffset) is introduced between the models rendering on
two images. After segmentation, pixel errors between both
the images and models are calculated. The objective is to
minimize pixel error of equation 5 obtained from each of
the two cameras

e1 =
√∑

x

[I1(C,P1)−M(C)]2 (6)

e2 =
√∑

x

[I2(C,P2)−M(C)]2 (7)

where P1 and P2 are linked by an offset of yaw angle. In or-
der to optimize both errors we propose Pareto based NSGA-
II MOO.

4.1.1 NSGA-II

Genetic Algorithm is a well known search technique. We
have used its multi-objective version of Non-dominated
Sorting Genetic Algorithm (NSGA-II) proposed by [2] to



Figure 8. Fitting of MOAAM

optimize the appearance C and pose parameters P . The
target is to find out the best possible values of these pa-
rameters giving minimum pixel errors between the model
and the query images of both cameras. In this optimization
technique each parameter is considered as a gene. All the
genes of C and P are concatenated to form a chromosome.
A population of particular number of chromosomes is ran-
domly created. Pixel errors (fitness) between query images
and the model (represented by each chromosome) are cal-
culated. Tournament selection is applied to select parents
from the population to undergo reproduction. Two point
crossover and Gaussian mutation is implemented to repro-
duce the next generation of chromosomes. Selection and
reproduction is based upon non-dominating sort. The ob-
jective is to minimize both of these pixel errors, hence non-
dominating scenario is to be implemented by Pareto opti-
mization.

4.1.2 Pareto Fronts

The fitting of AAM to image data is performed by mini-
mization of the error function. In MOO several error func-
tions are to be minimized, hence mutual relation of these
errors point towards the appropriate MOO method. Domi-
nating errors can be dealt with non Pareto based MOO, but
in this scenario both cameras serves the same purpose of
acquiring images of a face. Hence non-dominating scenario
is to be implemented with the desired Pareto optimum so-
lution. The basic idea is to find the set of solutions in the
population that are Pareto non-dominated by the rest of the
population as shown in figure 9(a). These solutions are as-

signed the highest rank and are removed from further as-
signment of the ranks. Similarly, the remaining population
undergoes the same process of ranking until the population
is suitably ranked in the form of Pareto fronts as shown in
the figure 9(b). In this process some kind of diversity is
required in the solutions to avoid convergence to a single
point on the front. This diversity can be achieved by the
exploration quality of Genetic Algorithm.

(a) (b)

Figure 9. Pareto Fronts

4.1.3 Switching of MOO to SOO

Processing data from two cameras is meaningful as long
as they are relevant. With respect to a camera if a face is
oriented such a way that it occludes itself there is no need
of processing data from this camera. Eventually in order to
avoid wastage of processing we divide field of views of both
cameras in three regions R1, R2 and R3 as shown in fig-
ure 4. To determine the region of the face orientation Pareto
based NSGA-II is applied to evolve populations until small
number of generations. After each generation evolution, the
histogram of genes of the entire population representing the
yaw of a face is observed. This histogram follows one of the
three curves of figure 10. Histogram curve-1 corresponds
to region-1, where the information from both the cameras
are meaningful and data from any one of them cannot be
neglected. Whereas histogram curve-2 and curve-3 corre-
sponds to region-2 and region-3 respectively, where the in-
formation from one of the camera is sufficient enough to lo-
calize the facial features and other camera can be discarded.
After few generations, current population decides whether
to stay in MOO or to switch to single objective optimiza-
tion (SOO). Mathematically, let us suppose Pop is a set of
population given as

Pop =

∣∣∣∣∣∣∣∣∣
X11 X12 · · · X1k · · · X1M

X21 X22 · · · X2k · · · X2M

...
...

. . .
...

. . .
...

XN1 XN2 · · · XNk · · · XNM

∣∣∣∣∣∣∣∣∣ (8)

where N is the number of chromosomes X and M is the
number of genes of each chromosome. Now we observe the
kth gene of each chromosome which represents yaw angle
of the model. In order to calculate the histogram of chro-
mosomes, we assign 1 to ζ such as



ζi =
{

1 −θth ≤ Xik ≤ θth

0 Xik ≤ −θthorXik ≥ θth
1 ≤ i ≤ N (9)

where θth is the threshold angle equals to the half of the
angle between two cameras. ε is the ratio of number of
chromosomes representing the face position in region-1 to
the total number of chromosomes.

ε =
∑N

i=1 ζi
N

=
{
< 0.50 Single Camera Mode
≥ 0.50 Multi-View Mode (10)

The value of ε decides whether to stay in MOO and uti-
lize both cameras or to switch to single camera mode.

Figure 10. Histogram of chromosomes vs. head orientation

4.1.4 MOAAM fitting

For MOAAM (also called MVAAM: Multi-view AAM) fit-
ting we refer readers to our previous work of [3], which
illustrates stepwise detailed description of MOAAM fitting
on a query image. It includes steps of initialization, repro-
duction, segmentation, fitness calculations, non-dominating
sort, replacement and switching of MOO to SOO. In our
previous work we have highlighted the effects of slight er-
rors caused by the camera calibration and the ground truth
points for a real face database.

Camera calibration problem arises when we compare
MOAAM results to SOAAM. As we have already men-
tioned in section 3.2 that models obtained from two cameras
placed at the extreme edges of the display are blended to-
gether to compare it with the one obtained from the central
camera. This comparison is highly prone to the calibration
error of all the three cameras. Whereas the results from a
single camera (SOAAM) do not experience any calibration
problem. In this article we have manage to overcome this
dilemma by building a synthetic face database of several in-
dividuals. The scenario shown in figure 4 is emulated, in the
software named as MAYA, by placing different synthetic
characters in between two virtual cameras each calibrated
and located 50◦ apart. A third camera is placed in-between

these two cameras for the comparison of results of a sin-
gle camera and double camera. These cameras have all the
characteristics of an actual camera along with the capabil-
ity to fix intrinsic and extrinsic parameters to obtain 100%
calibration.

Ground truth points are the exact localization of the face
orientation and features (nose, eyes and mouth). In real face
database there is a possibility of slight errors in the ground
truth points since they are marked manually on each facial
feature of each image. However in synthetic facial images
this problems is solved by obtaining these locations auto-
matically through scripts written in MAYA. With all these
modifications we have verified our proposition of MOAAM
and have updated our results.

4.2. Experimental Results

We performed simulations using 64x64 pixels AAM by
annotating 37 subjects of publicly available databases of
M2VTS [45]. However for testing database we have used
both real face database and synthetic face database. Both
these databases contains 2418 facial images, of 7 real and
10 synthetic faces, from each camera. Among 2418, 806
images are considered to be taken from central camera to
validate our results. In testing phase face alignment is
performed on all the views from left profile to right pro-
file. Two sets of experiments are performed: SOAAM and
MOAAM.

Single-Objective AAM : In SOAAM, AAM is rendered
on the image sequence from the central camera, which is
placed to highlight the benefit of MOAAM. As far as op-
timization is concerned, SOAAM is optimized by classical
GA optimization. Same selection and reproduction criteria
of NSGA-II are implemented in GA, in order to give a good
comparison.

Multi-Objective AAM : In MOAAM, same AAM is
rendered on the face image sequence from the other two
cameras, which are actually the part of our multi-view sys-
tem. Localization of face on these two images from each
camera is performed by Pareto based MOO of NSGA-II.

Best chromosomes obtained at the end of MOAAM and
SOAAM contain best appearance and pose parameters for
a given face. Features like eyes, nose and mouth can be ex-
tracted from these shapes as shown in figure 11. First three
rows correspond to synthetic faces while remaining rows
represent real human faces. It can be seen from the images
that as the face moves laterally the feature localization gets
far better in two cameras (MOAAM) than in single central
camera (SOAAM).

Figure 12(a) shows percentage of aligned synthetic im-
ages versus mean ground truth error (GTE) of facial fea-
tures (eyes, nose and mouth). GTE is actually the mean
error obtained by comparing MOAAM analyzed locations
and manually marked locations of all the facial features of
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Figure 11. (a) & (b) Comparison of SOAAM and MOAAM (op-
erating in R2 or R3). (c) & (d) Comparison of SOAAM and
MOAAM (operating in R1).

a facial image. The GTE is normalized by Deye which cor-
responds to the distance between eyes i.e. an error of 1
corresponds to a mean error equal to the distance between
the eyes. To eliminate the vagueness of ground truth mark-
ings we consider results starting from 0.1 of Deye, which
means any two algorithms having a GTE less than 0.1 is
considered to be equally accurate. While for the maximum
threshold results less than 0.25 of Deye is considered to be
well converged results. Figure 12(a) depicts that our system
of MOAAM fitting by NSGA-II is a lot better than SOAAM
fitting. In MOAAM 69% of the images are aligned with a
ground truth error less than 0.2 of Deye. Whereas SOAAM
aligned 41% of the total images. Similarly figure 12(b)
shows the results of experiments on real faces (previous
work); MOAAM 68% and SOAAM 50%.

As far as time consumption is concerned, it is obvious
that at the worst MOAAM required twice of the processing
time compared to SOAAM but at the same time accuracy,
robustness and increased field of view (FOV) is achieved.
Moreover our technique of finding the region of face and
discarding the data from the camera by NSGA-II reduces
this twice factor. SOAAM required 1600 warps whereas
MOAAM instead of 3200 warps required 2700 warps. Each
warp equals 90% of the time consumed by an iteration i.e.

(a) (b)

Figure 12. (a) MOAAM vs. SOAAM (Synthetic face images). (b)
MOAAM vs. SOAAM (Web-cam images)

0.03 msec in Pentium-IV 3.2GHz. Therefore each facial
image requires 90 msec for the analysis without any prior
knowledge of the pose, however in tracking mode we can
reduce this time by employing pose parameters of previ-
ous frames, which eventually reduces the number of warps
(iterations). Moreover facial analysis by MOAAM can be
made as a generic or a person specific MOAAM. In generic
MOAAM the query face is totally unknown and to analyze
it we need a vast learning database, whereas in person spe-
cific MOAAM model is generated from facial images of
the same individual who would be analyzed by the system.
Eventually person specific MOAAM is more time efficient
and robust compared to generic MOAAM.

5. Face Synthesis
The goal of our application is to clone the gamer’s facial

expression to an avatar. The cloning consists of transfer-
ring the facial expressions from a source (typically a human
face) to a target (another human face or a synthetic one).
The avatar facial deformations then originates from real
human movements (performance-based facial animation),
which usually look more natural than manually-designed
facial animation. Moreover, since the expressions of the
gamer are captured and transferred in real-time, the facial
animation of the avatar acts as a real gaming experience, and
significantly improves the interactivity of the game com-
pared to pre-recorded animation sequences.

5.1. System Description

In this section, we present a general description of a sys-
tem that provides an efficient parameterization of an avatars
face for the production of emotional facial expressions, re-
lying on captured human facial data. Here we make use of
two databases of our previous work of [46]. An illustration
of the system and its applications is displayed on figure 13.

5.1.1 H-Database

The entry point of the system is a database of approximately
4000 facial images of emotional expressions (H-database).



Figure 13. Overview of the face synthesis system.

These images have been acquired on an actor performing
facial expressions without rigid head motion. The database
was constructed to contain an important quantity of dy-
namic natural expressions, both extreme and subtle, cate-
gorical and mixed. A crucial aspect of the analysis is that
the captured expressions do not carry any emotional label.
The facial images will allow us to model the deformation
of the face according to a scheme used in section 3.1. The
AAM procedure delivers a reduced set of parameters which
represent the principal variation patterns detected on the
face. Every facial expression can be projected onto this
parameter space referred to as the appearance space (fig-
ure 13 presents symbolic 3D representations of this space,
although it may contain 15 to 20 dimensions). Note that
this process is invertible: it is always possible to project a
point of the appearance space back to a facial configuration,
and thus synthesize the corresponding facial expression as
a facial image.

5.1.2 A-Database

A reduced parameter space similar to the one described
above can be constructed for the synthetic face, provided
that a database of facial expressions for the virtual charac-
ter is available (A-database). In this section we show how
to identify a reduced set of facial configurations from the
human database so that a coherent appearance space is con-
structed for the avatar (typically 25 to 30 expressions). The
purpose of this avatar database creation scheme is that the
appearance spaces of the human and the synthetic face have
the same semantical meaning, and model the same infor-
mation. It is then easy to construct a mathematical link be-
tween them (the ATM as illustrated on figure 13).

The appearance space for the synthetic face is built
through statistical modeling, similarly to the human appear-
ance space. We used the AAM scheme, for fine skin de-
formation like wrinkles can be efficiently modeled by tex-
ture changes. When trying to generate an appearance space
analogous to the human appearance space (section 5.1.1),
the choice of the elements of the avatar database is critical

and has to be made carefully to cover the same scope as the
human one. Moreover, examples of facial expressions for a
given synthetic face are not easy to obtain. While for real
faces, thousand of database samples can be produced with a
video camera and a feature-tracking algorithm, the elements
of an equivalent synthetic database are manually-designed
facial configurations. It is thus desirable to keep the number
of required samples small. These samples will constitute a
reduced database, used to model the facial deformation on
the synthetic face.

Our idea for building the A-database, is to use the hu-
man database, and extract the expressions that have an im-
portant impact on the formation on the appearance space.
Indeed, a lot of samples from the human database bring re-
dundant information to the modeling process, and are there-
fore not essential in the A-database. Following this logic,
we are able to reduce the set of necessary expression to
a reasonable size. Practically, We select the extreme ele-
ments of the database, meaning the elements presenting the
maximal variations with respect to a neutral facial expres-
sion. In terms of parameter space, these elements are lo-
cated on the convex hull of the point cloud formed by all
database elements and are detected using [47]. These sam-
ples are responsible for shaping the meaningful variance of
the database and thus encompass the major part of its rich-
ness. By manually reproducing these selected expressions
on the face of the virtual character, we can build its very
own appearance model according to the method presented
in 3.1. Our studies have shown that 25-30 expressions are
enough to train an efficient appearance model.

For the human database, we used more than 4000 ele-
ments. Using the convex hull procedure we have been able
to identify 25-30 representatives for the reduced database
(see figure 14), with a small reconstruction error. From this
outcome we deduce that the human database, however com-
plete, contains significant redundancy. The preceding pro-
cedure has allowed us to remove this redundancy to create
a good representation space for the avatar with only the im-
portant database elements. Such a reduced database can be
constructed for any synthetic character, and any human face
based on the same extracted elements (see construction of
the gamer’s database in section 6.2). Having to design sev-
eral facial configurations manually on a synthetic charac-
ter is a limitation of the method, yet it also can be seen as
an advantage: our system does not rely on any particular
facial control method (muscle systems, blendshapes, etc).
Any scheme able to provide good facial configurations can
be used. Our system can therefore easily be integrated in
already-established workflows.

The database construction method creates a specific con-
nection between the two databases, and thus the two appear-
ance spaces. In the next sections, we will see how we bene-
fit from it to animate the avatar based on the human motion



Figure 14. The first elements of the human expression located on
the convex hull of the point cloud formed by all database elements.

data.

5.1.3 Appearance Transformation Matrix (ATM)

The ideas developed in the previous section have lead to
the construction of analogous appearance spaces for the hu-
man face and the synthetic face. Both spaces are connected,
since the construction of the avatar appearance space is
based on elements replicated from the human database. It
follows that we have a correspondences between points in
the human appearance space and points in the avatar space.
We propose to use this sparse correspondence to construct
an analytical link between both spaces. This link will then
be used to transform human appearance parameters CH

into avatar appearance parameters CA, and thus clone a hu-
man facial expression on the synthetic face.

It can be noted that the modeling scheme of AAM we use
is linear (equations 1, 2 and 3). Linear variations and com-
binations are thus preserved by the modeling steps, and we
wish to maintain this linear chain in the retargeting process.
Therefore, as in other approaches like [48], we applied a
simple linear mapping on the parameters of the appearance
spaces:∣∣∣∣∣∣∣∣∣
CH(11)CH(12)· · ·CH(1k)
CH(21)CH(22)· · ·CH(2k)

...
...

. . .
...

CH(m1)CH(m2)· · ·CH(mk)

∣∣∣∣∣∣∣∣∣ = A0 ∗

∣∣∣∣∣∣∣∣∣
CA(11)CA(12)· · ·CA(1k)
CA(21)CA(22)· · ·CA(2k)

...
...

. . .
...

CA(n1)CA(n2)· · ·CA(nk)

∣∣∣∣∣∣∣∣∣ (11)

where m and n are the appearance parameters of human
and synthetic appearance space respectively, while k is the
number of expression stored in the database. Hence if CH

is amxk matrix andCA is a nxk matrix,A0 will be ofmxn.
The matrix A0 is obtained through linear regression on

the set of corresponding points. Depending on the dimen-
sionality of the appearance spaces (usually 15 to 20), it
can be profitable to turn to Principal Component Regres-
sion [49] to cope with a possible underdetermination of the
regression problem. Retargeting results are illustrated by
a few snapshots on figure 15. Complete sequences of ex-
pression retargeting can also be found on the accompanying
video.

6. Interactive System
Our proposition is a complete human machine interactive

system for a game console. Figure 16 is a detailed descrip-

Figure 15. Examples of cloning of facial expressions. The expres-
sions captured on the human face (left) are successfully transferred
to the faces of avatars (middle and right). First row shows neutral
faces.

tion of our system. This time it is viewed from perspective
of stages of the global system. System is composed of three
stages:

6.1. Avatar’s Face Modeling

In this section, we make use of procedure of section 5.1.2
to obtain a database of simple and realistic facial expres-
sions of an avatar called A-database. The visual aspect
of the synthetic character is chosen by the user. Different
classes of synthetic faces are available representing differ-
ent ages, races, gender, physique and features etc. Once
the class of the avatar is chosen, the required facial expres-
sions are generated automatically by the system for this face
(from the expressions identified in section 5.1.2). Note that
the system’s user has the possibility to edit the suggested
facial expression to personalize the look of its avatar. Ul-
timately the A-database contains the expressions, on the
user-chosen character, which are necessary to form the A-
Database.

We can build the its appearance model according to the
method presented in section 3.1. This procedure deliv-
ers a reduced set of parameters which represent the princi-
pal variation patterns observed on the synthetic face (CA).
Manual marking of the landmark on the synthetic face is
not needed as the synthetic face is already generated by the
system and it contains the location of each vertex.



Figure 16. Block diagram of the interactive system.

6.2. Gamer’s Face Modeling

The procedure of training is very simple and unprob-
lematic. The essence of this phase is to make the system
learn the facial deformations of the gamer’s face so it can
replicate the localization of features, emotions and gestures
on the synthetic face. The construction of the Gamer’s
database is similar to the one of the avatar. The gamer
has to mimic the expressions that have an important impact
on the formation of the appearance space (identified in sec-
tion 5.1.2). In practice, the required facial expressions are
displayed serially for the user to imitate. Facial images are
captured by generic MOAAM, as explained in section 4 to
automatically localize the facial features. Since user is un-
known to the system therefore generic MOAAM containing
an AAM model based on M2VTS facial images database is
used. Feature localized by MOAAM is displayed on the
screen for the user to fine tune the location of each fea-
ture. Finally all the facial images of the gamer are gener-
ated, each corresponding to synthetic facial expression of
the A-Database. By reproducing these selected facial ex-
pressions of the gamer, we can build its very own appear-
ance model along with its reduced appearance parameters

CG according to the method presented in section 3.1. With
CG and CA (obtained in previous section) we can calcu-
late ATM mathematically (see section 5.1.3). This ATM is
gamer dependent and can be used for cloning only for par-
ticular gamer who was involved in generating it in the first
place.

CA = A0 ∗ CG (12)

6.3. Online Cloning

From the previous two sections we obtained an ATM ca-
pable of transforming the appearance parameters from the
gamer’s appearance space to the avatar’s appearance space.
In online cloning, this transformation involves only a matrix
multiplication of real time gamer’s appearance parameters
CG with A0 to obtain avatar’s appearance parameters CA.
This analytically simple framework enables real-time per-
formances. The virtual illustration of a gamer is cloned in
the form of an avatar synthesized by CA and ultimately dis-
play on the screen as shown on figure 16.

The appearance parameters of a gamer are acquired in
real time by our facial analysis system of multiple cam-



eras. Tactical moves of the game causes the gamer to move
a lot in different direction. Yet the retargeting scheme of
section 5.1 has been designed for stable heads. Employ-
ing multiple cameras resolved this problem. Two cameras
placed at the extreme edges of the screen acquire real time
image of the gamer and at the same time his facial features
and pose are analyzed by person specific MOAAM. Per-
son specific MOAAM model is generated from the gamer
database of the previous section and it contain all the pose-
free facial variations of the gamer. Appearance parameters
undergoes transformation while pose parameter are directly
reproduced on the avatar face to clone both the gamer’s ex-
pressions and gestures (see the bottom part of figure 16).
The linearity of the AAM scheme allows the reproduction
of both extreme and intermediate facial expressions and
movements, with low computing requirements.

7. Conclusions
In this paper we proposed a solution to solve two bottle-

necks of facial analysis and synthesis in an interactive sys-
tem of human face cloning for non-expert users of computer
games. Facial emotions and pose of gamers cloned to bring
their realistic behavior to virtual characters. Bottlenecks of
analyzing the human face and synthesizing it in the form of
an avatar are dealt with.

Large lateral movements of a gamer makes it impossi-
ble to analyze and track his face with single camera. To
overcome this dilemma we exploit data from another cam-
era and associate it with the one unable to analyze at the
first place. Earlier the cost of a webcam and slow processor
demotivated the possibility of managing excessive amount
of data from multiple cameras. Currently with wide avail-
ability of inexpensive webcams the multi-view system is
as practical as single-view. To analyze the acquired multi-
view facial images we proposed multi-objective 2.5D AAM
(MOAAM) optimized by Pareto based NSGA-II. We have
presented new results (section 4.2) because of the problem
of calibration and ground truth points in our previous work.
Our approach of MOAAM is accurate, robust and capable
of extracting the pose, features and gestures even with large
lateral movements of a face.

As far as facial synthesis is concerned, cloning the hu-
man facial movements onto an avatar is not trivial due to
their facial morphological differences. We proposed a new
technique of calculating the mathematical semantic corre-
spondence between the appearance parameters of the hu-
man and avatar (ATM matrix). We calculated this ATM for
the gamer to be able to clone his emotions on the avatar in
real time. The interactive system we have presented is com-
plete and easy to use. We have shown the results of facial
features and pose extraction and how we synthesize these
facial details on an avatar by calculating the ATM with the
gamer’s help.

For the moment, this approach is limited to be used in an
interactive system for the gamers, but it would be interesting
to extend it for larger events, like conferences and meetings,
with multiple cameras installed on different corners of the
room and displayed on video projectors. Moreover it can be
used efficiently in communication where the channel band-
width is limited, since only the small amount of appearance
and pose parameters are transmitted from the human face to
the avatar for face synthesis.
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